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Introduction: 
 
Recursion,   in   computer   science,   is   the   process   a   function   goes   through   when 
one   of   the   steps   of   the   function   involves   invoking   the   function   itself.   When   a 
function   call   or   class   is   defined   by   referencing   itself,   it   is   recognized   as   being 
recursive.   Formally,   any   recursive   function   must   have   at   least   one   case   that 
does   not   result   in   a   call   to   itself,   known   as   the   base   case,   and   any   other   cases 
must   follow   rules   that   will   eventually   reduce   to   this   base   case.  
 
As   a   Software   Engineer,   you   are   introduced   to   recursion   in   your   first   200   level 
programming   class.   In   order   to   be   successful,   you   need   a   deep   understanding 
of   recursion   and   implementation.   This   document   goes   indepth   into   recursion; 
explaining   what   it   does   and   how   to   implement   it. 
 
The   two   types   of   recursion   that   are   discussed   in   this   document   are:   Tail 
Recursion   and   Augmented   Recursion. 
 
Background   : 
 
The   Call   Stack 
 
The   call   stack,   in   computer   science,   is   a   stack   data   structure   that   holds   the   data 
and   information   for   currently   running   subroutines.   Understanding   the   basics 
of   how   this   stack   works   is   essential   to   understanding   the   Stack   Overflow   Error, 
a   common   issue   encountered   when   using   recursive   functions   improperly.  
 
A   stack   data   structure   is   conceptually   basic:   there   is   a   list   of   elements   that   you 
add   to   on   one   end   only;   colloquially   called   “pushing”   to   the   “top”   of   the   stack, 
and   remove   from   the   same   end;   called   “popping”   the   “top”   of   the   stack.   It   can 
be   envisioned   metaphorically   as   a   stack   of   papers   on   a   table.   One   can   easily 
take   papers   o�   the   top,   or   place   more   on   the   top,   but   it   would   be   impossible   to 
add   to   the   middle   or   bottom   without   upsetting   the   stack.   Then,   the   execution 
of   a   program   could   be   thought   of   as   reading   through   these   papers   from   top   to 
bottom. 
 



When   a   computer   program   runs,   it   pushes   data   blocks   onto   the   call   stack   for 
execution.   When   a   function   is   called,   the   data   for   that   function   must   be   added 
to   the   stack   and   executed,   and   then   the   program   can   return   to   the   instructions 
it   was   executing.   In   this   example,   the   papers   might   be   thought   of   as 
instructions   for   your   program.   If   you   were   reading   through   these   papers   and 
one   said   “now   read   the   paper   titled   ‘fibonacci’”   you   would   then   place   that 
paper   on   the   stack,   read   it,   then   take   it   o�   and   continue   reading.  
 
When   a   recursive   call   is   made   and   the   recursive   step   is   reached   during 
execution,   the   function   data   is   pushed   onto   the   stack   again.   In   our   metaphor,   it 
would   be   as   if   that   paper   titled   ‘fibonacci’   instructed   you   to   read   itself,   which 
then   of   course   instructed   you   to   read   itself   again.   This   cycle   would   continue 
and   you   would   be   adding   papers   to   the   stack   forever!   This   is   what   happens   to 
the   call   stack   when   a   recursive   call   is   not   properly   reduced   to   its   base   case,   or   if 
the   base   case   doesn’t   exist.   Since   the   call   stack   in   computers   is   finite,   it 
eventually   has   no   space   to   store   the   next   function   call   and   the   program   exits 
with   an   error   (in   modern   programming   languages   at   least). 
 
Discussion: 
 
The   following   article   explains   the   basic   types   of   recursion   and   provides   real   life 
examples. 
 
General   discussion   of   types,   implementation,   process 
 
Recursive   Types  
 
Tail   Recursion 
 
A   recursive   function   whose   ‘tail   call’   is   the   function   itself.   A   Tail   Call   means 
what   is   called   in   the   ‘return’   statement   and   has   no   pending   operations   that   will 
be   performed   on   that   return   statement   of   the   call   stack.   This   means   a   return 
statement   like   the   one   in   the   example   shown   below. 

Ex:  
Some     function    foo ( int    n ){ 

return    foo ( n ‑ 1 );        ←    Here   is   the   tail   call,   notice   it   calls 
itself. 

} 



Each   recursive   call   is   pushed   to   the   stack.   The   stack   space   is   reserved   until   the 
return   statement   executes   in   the   function.   This   means   that   once   the   function   is 
next   to   be   popped   o�   the   stack,   the   return   statement   executes,   and   this 
function   is   no   longer   reserved   on   the   stack.   This   recursive   process   only 
continues   until   a    base   case    is   reached.   If   no   base   case   is   implemented,   the 
function   will   endlessly   call   itself   until   it   causes   a   Stack   Overflow.   A   base   case   is 
when   a   condition   statement   is   called   inside   the   recursive   function.   Given   the 
example   above,   it   does   not   contain   a   base   case.   Here   is   what   a   base   case   could 
look   like: 
 

Some     function    foo ( int    n ){ 

if ( n    ==     1 ){ ←     Here   begins   the   base   case.  

return     1 ; ←     It   says,   once   the   value   of   n   equals   1,   return   1. 

} ←     Now   we   begin   popping   off   the   stack. 

return    foo ( n ‑ 1 ); 

} 

Having   a   base   case   is   important   because   it   prevents   stack   overflow,   if 
implemented   correctly,   and   it   allows   the   process   of   popping   from   the   stack. 
Let’s   look   at   a   real   example   of   tail   recursion. 

 
public     static     void    main ( String []    args ){ 

foo ( 3 ); 

} 

 

public     static     void    foo ( int    n ){ 

if ( n    ==     1 ){ 

System . out . println ( 1 ); 

} 
else{ 

foo ( n ‑ 1 ); 

System . out . println ( n ); 

} 

} 

 
The   return   values   would   be: 
1 
2 
3 
 



This   type   of   recursion   is   useful   for   implementing   sorting   algorithms   such   as 
merge   sort,   which   is   covered   in   the   application   section.   The   implementation 
section   will   cover   more   on   how   recursion   can   be   used   to   make   methods   and 
functions   cleaner,   more   e�cient,   and   more   readable. 
 
 
Augmented   Recursion 
 
A   recursive   function   is   considered   to   be   “augmented”   recursive   if   the   return 
value   includes   another   call   to   the   function   with   a   pending   operation.   In 
augmented   recursion,   a   value   cannot   be   returned   until   all   the   function   calls 
have   been   completed   and   the   base   case   has   been   met.   Each   call   to   the   function 
is   pushed   onto   the   stack.   In   the   factorial   example   below,   if   the   base   case   is   not 
met,   the   function   returns    n * factorial ( n ‑ 1) .   Once   the   base   case   of    n==0    is   met, 
the   function   returns   a   value   of   1   instead   of   another   function   call.   Because   there 
are   no   more   calls   to   the   function,   the   deferred   operations   are   performed 
starting   at   the   top   of   the   stack.   
 
Ex:   

public     static     int    factorial ( int    n ){ 

if ( n    ==     0 ){ ←     The   base   case   is   0. 

return    1 ; ←     0   factorial   is   1. 

} 

else { ←     The   return   relies   on   another   call   to   the   function  

return    n   *   factorial(n‑1);  

} 

} 

 
Calling   the   factorial   method   with   an   argument   of   5   would   execute   as: 

 

Call   Order  Function 

1  factorial( 5 )   ⇒   5   *   factorial( 4 )   

2  factorial( 4 )   ⇒   4   *   factorial( 3 )   

3  factorial( 3 )   ⇒   3   *   factorial( 2 )   

4  factorial( 2 )   ⇒   2   *   factorial( 1 ) 



5  factorial( 1 )   ⇒   1   *   factorial( 0 ) 

6  factorial( 0 )   ⇒    1 

0   is   the   base   case,   which   returns   one.   There   are   no   more   calls   to   factorial,   now   the 
multiplication   can   be   performed   starting   from   the   top   of   the   stack. 
 

5  factorial( 1 )   ⇒   1   *    1    ⇒    1 

4  factorial( 2 )   ⇒   2   *    1    ⇒    2 

3  factorial( 3 )   ⇒   3   *    2    ⇒    6 

2  factorial( 4 )   ⇒   4   *    6    ⇒    24   

1  factorial( 5 )   ⇒   5   *    24    ⇒    120 

Return  120 

 
As   shown   in   the   above   example,   the   function   cannot   return   a   value   until   the 
base   case   has   been   met   and   the   operations   have   been   performed.   When   we   call 
factorial( 5 ) ,   the   function   evaluates   the   conditional   statement,    n==0,    to 
determine   if   the   base   case   has   been   satisfied.   The   value   of   n   is   5,   5   does   not 
equal   0,   so   the   conditional   statement   is   false   and   the   else   portion   of   the 
conditional   is   executed.   In   the   else   block,   the   function   returns   the   value   of   n 
multiplied   by   a   call   to   the   function   with   n-1   as   the   argument.   So,    factorial( 5 ) 
returns   5   *    factorial( 4 ) .   Now   the   value   of    factorial( 4 )    must   be   calculated 
before   the   value   of    factorial( 5 )    can   be   determined.   The   entire   procedure   is 
repeated   with   4   as   the   value   of   n;    factorial( 4 )    returns   4   *    factorial( 3 ) .   Another 
function   call   means   the   process   must   be   repeated   again.   This   cycle   will 
continue   until   the   base   case   of   0   is   reached   when    factorial( 0 )    is   called.   When 
the   base   case   is   reached,   the   function   calls   can   start   returning   values   starting 
at   the   top   of   the   stack.    Factorial( 0 )    returns   1,   so    factorial( 1 )    returns   1*1.   As   a 
result,    factorial( 2 )    returns   2   *   1   (the   1   comes   from    factorial( 1 ) ).   This 
continues   until   we   get   our   result   for    factorial( 5 ) ,   which   is   5   *    factorial( 4 ) .   The 
value   of   120   is   returned   and   the   function   is   finished.   
 
 
 
 

 



Process 
 
Every   time   a   function   is   called,   it   is   pushed   onto   the   call   stack.   Once   it   runs 
through   and   ends,   it   is   popped   from   the   stack   and   returns   any   data   (if   the 
function   has   any   data   to   return).   When   an   element   is   pushed   to   the   stack,   it 
means   that   each   element   already   existing   in   the   stack   is   moved   one   spot   lower 
on   the   stack   and   the   new   element   is   pushed   at   the   top   of   the   stack.   When   an 
element   is   popped   from   the   stack,   the   element   at   the   top   of   the   stack   call   is 
popped   (removed)   and   all   other   existing   elements   are   then   moved   up   one   spot 
in   the   stack. 
 
Going   over   the   example   code   that   includes   the    main()   method    in   the   tail 
recursion,   we   can   see   how   the   process   is   done,   as   shown   in   Figure   1   below. 
 

 
As   seen   in   Step   1,   once   the   program   begins   to   execute   we   start   in   the   main 
method,   this   function   is   pushed   to   the   stack.   Moving   into   the   function   we   see 
the   function   call    foo( 3 ) ,    this   is   now   pushed   to   the   stack   as   shown   in   Step   2.   The 
same   thing   is   done   for   Step   3   and   Step   4   for   each   n-1   call   until   the   base   case 
condition   is   met.   The   base   case   is   met   at    foo( 1 )    and   the   program   prints   1,   the 
print   statement   (which   can   be   thought   as   the   return   statement)   after   being 



executed   then   pops   the   function   call   o�   the   stack,   this   can   be   seen   in   Step   5. 
Now   that    foo( 1 )    is   o�   the   stack,   we   go   back   to    foo( 2 )    and   continue   where   it   left 
o�   (i.e.,   after   the    foo(n‑ 1 )    call).   This   leads   to   the   print   call   which   prints   2,   then 
pops    foo( 2 )    o�   the   stack.   Finally   we   get   to   the   Step   6   and   Step   7   where   it   prints 
3,   and   pops    foo( 3 )    o�   the   stack.   Looking   back   into   the   main   method   after 
foo( 3 )    pops   from   the   stack   we   continue   from   where   we   left   o�   at   and   we   hit   the 
end   of   the   main   method   at   " } ".   This   pops    main()    o�   the   stack   and   leaves   the 
call   stack   empty,   shown   in   Step   8. 
 
Implementation  
 
Although   recursion   can   not   be   defined   in   a   step-by-step   guaranteed   process, 
to   work   there   are   a   few   steps   you   can   take   to   see   if   recursion   can   work   for   your 
problem.   This   is   a   walk   through   of   these   steps   to   calculate   the   value   of   x   to   the 
nth   power(x^n)   or   x   to   the   n   exponent.   We   will   call   this   function 
exponential ( int    x ,     int    n)     in   both   cases.   The   first   example   is   the   solution   of 
the   problem   using   iteration. 
 
 
 
public     static     int    exponential ( int    x ,     int    n ){ 

int    total    =     1; 

if ( n    ==     0 ){ 

return     1; 

} 

for ( int    i    =     0 ;    i    <    n ;    i ++){ 

total    =    total    *    x; 

} 

 

return    total; 

} 

 
 
Now   that   you   know   how   to   solve   the   problem   iteratively,   lets   see   how   to   solve 
this   problem   recursively. 
 
First,   you   need   to   break   your   problem   into   the   simplest   parts   possible.  
 



x^(5)   can   be   broken   down   into   five   simple   parts:   [([([1   *   x]   *   x)   *   x]   *   x)   *   x].   Or 
x^(n)   can   be   broken   down   into   1   *   x(1)   *   x(2)   *   x(3).....   *   x(n).   This   is   as   simple 
as   the   parts   can   be   broken   down   to. 
 
Then,   you   need   to   figure   out   the   base   cases   that   will   start   the   return   process.  
 
The   base   case   for   this   problem   can   be   found   by   doing   a   simple   calculation   of 
5^2.   You   will   start   by   multiplying   5   *   1.   But,   if   it’s   x^0   we   actually   need   to   have 
the   answer   be   1   because   anything   raised   to   the   0   power   is   1.   Our   two   base   cases 
will   be, 
 

1. If   n   ==   0   return   1; 
2. Once   n   ==   1   return   x   or   x   *   1; 

 
 
 
Finally,   you   need   to   combine   your   base   cases   with   your   simplified   steps. 
 

1. Write   out   your   base   cases   that   are   in   pseudo   code   above. 
 
if ( n    ==     0 ){ 

return     1; 

} 

if ( n    ==     1 ){ 

return    x    *     1; 

} 

 
2.   Write   out   your   simplest   step   in   a   recursive   format,   calling   the   function   itself 
with   di�erent   parameters.  
 
if ( n    >     1 ){ 

return    x    *    exponential ( x ,    n    ‑     1 ); 

} 

 
3.   Finally,   combine   these   two   steps   and   add   the   function   definition. 
 
private     static     int    exponential ( int    x ,     int    n ){ 

if ( n    ==     0 ){ 

return     1; 



} 

if ( n    ==     1 ){ 

return    x    *     1; 

} 

if ( n    >     1 ){ 

return    x    *    exponential ( x ,    n    ‑     1 ); 

} 

 

} 

 
Application   :   Merge   Sort 
 
One   of   the   most   common   applications   of   recursion   is   the   Merge   Sort 
Algorithm.   This   is   a   general   method   of   sorting   an   array   of   comparable 
elements,   for   example   placing   an   array   of   integers   into   numerical   order.   This 
algorithm   is   very   often   used   because   it   has   great   performance   in   both   time   to 
execute   and   space   that   is   required   for   execution. 
 
Conceptually,   the   algorithm   has   two   parts: 
1.   Divide   the   given   array   into   two   equally-sized   or   o�-by-one   sized   sub-arrays 
and   sort   them   using   merge   sort. 
2.   Combine   the   two   sorted   arrays   into   one   sorted   array. 
 
With   the   base   case   of   the   algorithm   being   the   given   array   is   of   size   one   as 
naturally   an   array   with   only   one   element   is   sorted. 
 
Step   through   the   algorithm   with   the   following   array   as   the   input: 
[1,   5,   7,   2,   4,   0,   8,   3,   6] 
Divide:   =>   [1,   5,   7,   2]   ,   [4,   0,   8,   3,   6] 
Divide:   =>   [1,   5],   [7,   2],   [4,   0]   ,   [8,   3],   [6] 
Divide:   =>   [1]   [5]   [7]   [2]   [4]   [0]   [8]   [3]   [6] 
 



 
 
Here,   the   base   case   is   reached   and   the   last-called   recursive   step   can   continue 
execution. 
Combine:   =>   [1,   5]   [2,   7]   [0,   4]   [3,   8]   [6] 
Combine:   =>   [1,   2,   5,   7]   [0,   3,   4,   6,   8] 
Combine   =>   [0,   1,   2,   3,   4,   5,   6,   7,   8] 
 

 
 
 
 



Conclusion: 
 
Recursion   is   a   process   of   a   function   calling   calling   itself   to   complete   tasks   and 
reach   a   certain   goal.   Tail   recursion   does   this   process   by   calling   itself   in   the 
return   function.   Augmented   recursion   makes   its   recursive   call   in   the   main 
portion   of   the   function.   Each   call   to   a   recursive   function   performs   a   push   to   the 
stack   to   store   its   variables.   Once   the   final   call   is   made   on   each   return   the 
desired   output   is   returned   to   the   previous   function   until   the   last   function   on 
the   stack   is   returned. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


